
An approach for detecting student
perceptions of the programming experience

from interaction log data

Jamie Gorson, Nicholas LaGrassa, Cindy Hsinyu Hu, Elise Lee,
Ava Marie Robinson, and Eleanor O’Rourke

Northwestern University, Evanston IL, USA
{jgorson, nick.lagrassa, cindyhu2023, eliselee, avarobinson2021}

@u.northwestern.edu, eorourke@northwestern.edu

Abstract. Student perceptions of programming can impact their ex-
periences in introductory computer science (CS) courses. For example,
some students negatively assess their own ability in response to moments
that are natural parts of expert practice, such as using online resources
or getting syntax errors. Systems that automatically detect these mo-
ments from interaction log data could help us study these moments and
intervene when the occur. However, while researchers have analyzed pro-
gramming log data, few systems detect pre-defined moments, particularly
those based on student perceptions. We contribute a new approach and
system for detecting programming moments that students perceive as
important from interaction log data. We conducted retrospective inter-
views with 41 CS students in which they identified moments that can
prompt negative self-assessments. Then we created a qualitative code-
book of the behavioral patterns indicative of each moment, and used
this knowledge to build an expert system. We evaluated our system with
log data collected from an additional 33 CS students. Our results are
promising, with F1 scores ranging from 66% to 98%. We believe that
this approach can be applied in many domains to understand and detect
student perceptions of learning experiences.

Keywords: CS education · Detection systems · Self-efficacy · Self-assessment

1 Introduction

While programming skills are increasingly important for 21st century learners,
many students struggle in introductory computer science (CS) courses [24, 32].
Recent studies suggest that this struggle may be exacerbated by students’ self-
perceptions; students often believe that they do not belong [54, 30, 48], are not
capable of succeeding [34, 19, 13], or are performing poorly in CS [21, 26, 31, 32].
In this paper, we focus on one aspect of student self-perceptions: negative self-
assessments. In our previous work, we found that students frequently assess their
own programming ability, using moments that occur during the programming
process as signals of whether they are performing well [22, 21]. However, many



2 Gorson et al.

of the moments that students see as negative performance indicators are natural
parts of expert practice; for example, many students believe that spending time
planning and struggling with syntax errors are signs of low ability [28, 41, 52].
Students who negatively self-assess more frequently also tend to have lower self-
efficacy [22], which can influence persistence and performance in CS [31, 37].

While our previous survey studies have established the prevalence of negative
self-assessments in CS [22, 21], we have a limited understanding of the program-
ming moments that prompt negative self-assessments. If we could detect these
moments as they arise during the programming process, we would be able to
study them more directly. Furthermore, if such a detection system were auto-
mated, we could study these moments using a significantly larger sample of data,
as manually detecting them is labor-intensive. An automated detection system
would also enable the development of real-time feedback interventions, which
provide messages to students at key moments. This type of intervention has
been shown to be effective in mediating student perceptions in other contexts
[39, 11] and can scale to meet the increasing demand in CS.

Interaction log data collected from programming environments may be use-
ful for automatically detecting self-assessment moments, since researchers have
successfully leveraged this type of data to analyze student programming process
[9, 8, 7], predict student performance [23, 9, 1, 38, 42], and build automated feed-
back interventions [14, 35]. However, most of these prior systems use bottom-up
methods to identify behavioral patterns in interaction data, rather than using
top-down approaches to detect pre-defined programming moments like struggling
with syntax errors, an example of the self-assessment moments. Systems that use
top-down approaches, such as cognitive tutors [3, 2, 10], generally require models
of expert practice. However, researchers are not experts in understanding how
students perceive the programming process, and thus we would need to elicit
this knowledge from students to create such a model in this domain.

To address these challenges, we contribute an approach called retrospective-
enabled perception recognition for designing systems that detect student percep-
tions of the programming process. In this approach, the designer uses retrospec-
tive interviews [16] to elicit student perceptions of programming moments, and
then builds a qualitative codebook that describes the behavioral patterns indica-
tive of each moment. This codebook is used to inform the design of an expert
system. We used our approach to design an automated detector for eight self-
assessment moments based on retrospective interviews with 41 CS students. We
evaluated the performance of our system using data collected from an additional
33 students, comparing the automatically detected moments to those manually
labelled by the authors. Our results are promising, with F1 scores ranging from
66% to 98%. We also present an analysis of our systems’ incorrect decisions,
enabled by the transparency of the expert system approach. Our detection sys-
tem has the potential to facilitate future studies of self-assessment moments and
support interventions that provide real-time feedback. Our findings also suggest
that the retrospective-enabled perception recognition approach can be used to
design detection systems for student perceptions in other contexts in the future.



An approach for detecting student perceptions of programming 3

2 Background

2.1 Student self-perceptions in CS

Computing education researchers have found that students often have negative
perceptions about themselves and their experiences in CS. For example, when
student perceptions of a programming session do not align with their expecta-
tions, students sometimes have negative emotional reactions even after success-
fully solving problems [25]. Additionally, students who have community-oriented
goals often perceive that they can not meet these goals in computing careers [29].
Studies also show that many students perceive that they do not belong in com-
puter science, often because they belong to a group that is underrepresented
in the field [36, 15, 48, 18, 53]. These negative perceptions have been shown to
correlate with students’ self-efficacy [4, 25, 26, 54], or the belief in one’s ability to
accomplish a task or achieve mastery in a specific domain [5, 6, 47]. Self-efficacy
has a direct impact on student learning outcomes [45] and often correlates with
student performance in CS courses [55, 33, 43].

In this paper, we focus on students’ perceptions of programming experiences
that prompt them to negatively assess their ability. CS1 students assess their
programming ability frequently [21, 26], and often think they are performing
poorly when they encounter programming moments essential to the program-
ming process [21, 22]. Our recent survey study with 214 CS students from three
universities identified 13 programming moments which cause many students to
negatively self-assess, even though the moments are also natural parts of expert
practice [28, 41, 52]. For example, some students report that they feel like the
are performing poorly when they use online documentation to look up syntax,
stop to think about their solution, and spend time planning [22]. We also found
that students who negatively self-assess in response to more of these moments
tend to have lower self-efficacy. However, we do not know how these moments
arise or when they occur in students’ programming process.

2.2 Analyzing programming interaction log data

Researchers have explored many methods for interpreting log data collected
from programming environments. This interaction data is used for two primary
purposes: to produce new knowledge from a bottom-up analysis of student in-
teractions, and to perform top-down detection of programming moments.

Many researchers take data-driven approaches to study the student program-
ming process [8, 7, 51, 20] and to evaluate or predict student performance [23, 9,
1, 38, 42, 55]. Initially, most of this work analyzed compilation logs [23, 51], but
more recently, researchers have leveraged machine learning techniques to identify
patterns in interaction log data. For example, Blikstein et al. clustered students
based on their problem-solving pathways to study how they progressed through
programming assignments [9]. Berland et al. also used clustering techniques to
study tinkering and how programming behaviors change across stages of the
problem [7]. These studies used a bottom-up approach, analyzing data to find



4 Gorson et al.

patterns organically rather than building hand-architected models to identify
preconceived moments of interest.

Some researchers have used interaction log data and expert knowledge of
the programming process to identify pre-defined moments through top-down
approaches. Expert systems, a common technique, reason about student inter-
actions based on models of expert decision-making processes. For example, cog-
nitive tutors like the LISP tutor [44] use expert systems to provide relevant
feedback. Marwan et al. used a similar approach to analyze program states to
identify milestones in student progress while solving problems [35]. Koskal et al.,
however, demonstrated how challenging it can be to build systems that detect
pre-defined programming moments [27]. The authors set out to develop a system
to automatically detect the stages in the design recipe [17], a scaffolded process
for solving programming problems. However, they found that the fuzzy design
recipe stages were hard to automatically detect from low-level log data due to
the wide variation in student behaviors during each stage [27].

While previous studies show promise in deriving indicators of student behav-
ior and process from low-level data, existing approaches do not yet explore how
to use log data to automatically detect moments based on student perceptions.
Expert systems are designed to model expert knowledge, but researchers are not
experts in understanding how students perceive the programming process. As
a result, we need an approach for eliciting this knowledge from students. We
contribute a new approach for designing systems that use interaction log data
to detect programming moments that students perceive as meaningful.

3 Retrospective-enabled perception recognition

The main contribution of this paper is our approach for detecting student percep-
tions of the programming experience from interaction log data. In this section,
we describe our new approach and present the methods we used to build a system
to detect moments when students may negatively self-assess while programming.

To enable our system, we designed extensions to collect interaction log data
from two programs: jGRASP [12] (an IDE often used in introductory Java
courses) and Chrome (a commonly used web browser). We chose these two pro-
grams because they account for a large portion of student interactions with
the computer while programming. Each extension collects time-series data in a
JSON format for a number of user actions and events, which allows us to keep
track of student behavior and the state of the IDE. Our jGRASP extension, built
in collaboration with the jGRASP development team, captures all keystrokes,
cursor movements, console messages, and interactions with buttons and win-
dows. Our Chrome tool captures all navigation on websites, including the URLs
and scrolling behavior while viewing a page. During the data collection process,
we iterated on the events and actions collected by the extensions as we learned
more about the behaviors associated with each moment. For example, after look-
ing at the data, we realized that student scrolling patterns revealed important
information about their behavior, so we added this to our extensions.



An approach for detecting student perceptions of programming 5

3.1 Phase 1: Retrospective interviews

We conducted retrospective interviews during Phase 1 to capture student percep-
tions of the programming experience. We recruited 41 participants from a large
public university in the United States. At the time of the study, all participants
enrolled in a second-semester introductory CS course (CS2), a requirement for
CS majors, were eligible to participate. We recruited students with emails sent
by the professor of the course. The study took place virtually through Zoom.
Students provided consent to participate and were compensated for their time.

The goal of the interview was to gather examples of self-assessment moments
naturally occurring during programming sessions, along with participants’ per-
ceptions of those moments. When a participant joined the Zoom call, the re-
searcher installed the Chrome and jGRASP extensions on the student’s com-
puter. Then the researcher provided a short review of how to use jGRASP to
ensure a baseline level of familiarity with the development environment. We
asked the student to work on one of three similar programming problems while
sharing their screen, and told them to work on the problem like they would a
homework assignment. During this part of the interview, the researcher turned
the student’s video and microphone off and did not interrupt them to reduce the
effect of the lab environment on their behavior as much as possible.

After 30 minutes of programming, we conducted a retrospective interview
[16]. We gave the student a list describing a subset of the self-assessment mo-
ments from Gorson & O’Rourke [22] (see examples in Table 1). We chose to only
include the moments that occur during the programming process, like changing
approaches, and not general reflections, like spending a long time on a problem,
because we were more likely to be able to determine when they will happen. Fi-
nally, the student and researcher watched a screen recording of the programming
session and the student identified each time one of those moments occurred. Be-
low in Figure 1, we provide an example of the self-assessment moments that were
labelled in the retrospective interview for one participant.

Table 1. Negative self-assessment moments detected by our expert system.

Moments and detailed descriptions

Using resources to look up syntax from the web or other sources
Using resources to research an approach from the web or other sources
Changing approaches to try a new approach for solving the programming problem
Writing a plan in the comments or notes to outline future programming steps
Getting simple errors which are usually compiler errors due to oversights or typos
Getting Java errors which are usually runtime errors due to conceptual mistakes
Struggling with errors while trying to fix or debug the errors
Stopping to think while implementing a solution

Fig. 1. The self-assessment moments that occured in one participant interview.



6 Gorson et al.

3.2 Phase 2: Qualitative analysis

The goal of Phase 2 was to develop a qualitative codebook that the researchers
could use to identify negative self-assessment moments independently, without
additional knowledge of student perceptions. Identifying moments such as using
resources may appear straightforward, however students’ perceptions of these
moments are quite nuanced. For example, in our prior work students reported
different reactions when using resources to look up syntax versus using resources
to research how to solve the problem [21, 22]. While it is relatively easy to deter-
mine when a student is viewing a website or a course resource, determining the
purpose of its use is more difficult. In addition, it is critical to identify each use
of a resource, because a student who references the same resource multiple times
will have a different experience than a student who uses multiple resources for
different purposes. We therefore use a detailed qualitative codebook to capture
the nuances discovered through the retrospective interview process

To develop this codebook, we qualitatively analyzed the retrospective inter-
views. After conducting the first 20 interviews, we compiled a list of all student-
labeled moments. From that list, we distilled a set of representative behaviors
for each moment and wrote an initial draft of the codebook. The codebook in-
cludes a high-level definition of each moment and a set of heuristics that describe
the behavioral patterns indicative of each moment. We then re-watched the first
twenty interviews and iterated on the behavioral descriptions for each moment
until two researchers could accurately and consistently label all of the moments.

As an example, we describe how we identify struggling with errors using
our codebook. We defined three levels of behavioral indicators for this moment:
strong, medium, and weak. If a student exhibits a strong indicator, such as
running code in an attempt to fix a bug three times in a row without succeeding,
we would label this as struggling with errors. If there is no strong indicator, but
there are two medium indicators, such as using resources after getting an error,
we would also label this as struggling with errors. Finally, while weak indicators,
such as a slower pace of typing, are not enough to label the moment on their
own, the researchers use them to strengthen their confidence in the decisions.

3.3 Phase 3: Codebook verification

In Phase 3, we first tested the codebook using data from an additional 21 in-
terviews. After each new interview, two authors watched the screen recording
of the programming session and used the codebook to label the self-assessment
moments. Then, the researchers compared their decisions to the participant’s
labels in the retrospective interview as member-checks of the labelling scheme
[49]. When there were misalignments between a participant’s labels and the
researchers’ labels that could not be explained by the participant misusing or
missing a label, the researchers adjusted the description of that moment to in-
corporate the newly observed behavior. This iterative process continued until
the researchers did not need to make changes for five consecutive interviews in
which the moment was present. At that point, we considered the codebook for



An approach for detecting student perceptions of programming 7

that moment to have reached saturation [46, 40]. Of the 12 moments that we
asked student to label during the retrospective interview, we were able to reach
saturation for eight (see Table 1). Most of the moments for which we did not
reach saturation occurred at the beginning of the programming session, such as
writing a plan before implementation. At this point, students generally interact
less with the computer, making it more difficult to identify these moments.

3.4 Phase 4: Implementation of the detection system

In Phase 4, we built an expert system to detect self-assessment moments us-
ing the heuristics in our qualitative codebook. Our system has two stages: data
transformation and decision-making. In the data transformation stage, we parse
through each event captured in the interaction log data, recreating the program-
ming session and recording around 100 human-authored metrics into a knowledge
base. Together the metrics provide a comprehensive snapshot of the state of the
programming process. For example, one metric captures the number of lines that
a student pastes from a resource into their code. In the decision-making stage, we
analyze the metrics at each log event to determine if any of the self-assessment
moments occurred. We use two different styles of heuristic algorithms, either
if-then rules when there is less ambiguity in the decision-making process (e.g.
getting simple errors), or fuzzy logic [56] when many metrics need to be con-
sidered in parallel (e.g. using resources to look up syntax ). For example, we use
fuzzy logic to increase our confidence that a student is using a resource to look
up syntax if they paste either one or two lines of code from the resource.

As a concrete example, consider the strong indicator for the struggling with
errors moment, when a student runs the code in an attempt to fix a bug three
times in a row. One metric for this indicator calculates whether the student is
working on the same error across multiple compilations. This metric keeps track
of the number of the errors in the console and the names of the errors. After
each compile, we use this information (along with some additional details about
code edits) to evaluate if the student is still working on the same bug.

We chose an expert system because retrospective data is time-intensive to col-
lect. It is impractical to collect enough student-labeled data to serve as ground-
truth for machine learning algorithms. Additionally, data-driven approaches of-
ten produce features that are not human-interpretable, making it difficult to
understand their decisions and limitations. With an expert system, we can trace
the decision process and ensure that the system is making logical choices.

4 Evaluation of the system

4.1 Methods

We evaluated our system by comparing the automatically detected moments to
those manually labelled by the authors. While researchers can make mistakes in
labeling, this data is the most reliable item of comparison, as participant-labelled



8 Gorson et al.

data is often inconsistent due to differing interpretations of the moments and
participant attention spans. We collected data from programming sessions with
33 additional students from the same university and CS2 course as our initial
interviews. The setting and procedure were the same, with the exception of the
retrospective interview, which was excluded. To establish the reliability of the
researcher-assigned labels, two authors independently labelled the same seven
interviews, or 21% of this data set, achieving 82% agreement. Those authors
then authors independently labelled the remainder of the data.

One challenge in evaluating this system is establishing a way to compare
moment timing between the researchers and the machine. When manually la-
belling the moments, the researchers picked a timeslot from non-overlapping
ten-second windows (e.g., 0-10, 10-20). When comparing the system’s results to
the researcher-labelled set, we used an additional fifteen-second buffer on both
sides of the ten-second window because the start time of a moment can be dif-
ficult to determine and might fall on the border of a window. We marked a
machine detection as correct if the timestamp assigned to a label was within
this forty-second window. We used a slightly larger buffer to more accurately
represent two of the moments. For changing approaches, we used a two-minute
buffer instead of a fifteen-second buffer because this moment often takes places
over a few minutes, and we did not have a way to consistently identify matching
start times. For struggling with errors, the researchers identified the start and
end time for the error cycle in which the participant struggled. We deemed a
system-identified label as correct if the system chose any time within the error-
cycle boundaries. While both of these windows are larger, they reflect the context
of these moments and the system’s ability to identify these moments accurately.

After running our system on the log data from our evaluation data set, we
further analyzed its performance by looking at each false positive and false neg-
ative result. The authors reviewed each case and categorized the reason for the
false detection by watching the screen recording of the moment and consulting
the codebook. During this process, we identified a number of instances when the
researchers mislabeled moments, and also noted the limitations of our system.

4.2 Findings

Our results in Table 2 show that we had very high F1 scores for some moments,
such as getting simple errors, and lower but still reasonable F1 scores for oth-
ers, such as writing a plan. While precision and recall are both important, high
precision matters most for interventions to ensure that real-time messages are
delivered in response to true moments, and recall is most important for studies
to ensure that relevant moments are not missed. The data also shows that the
moments arise at varying levels of frequency; getting simple errors and stopping
to think were most frequent, while writing a plan and using resources to research
an approach only occurred occasionally. Our system tended to perform worse for
less frequent moments, likely because our codebook and system were developed
using fewer observations. However, the frequency of a moment does not nec-
essarily indicate its importance. While we do not yet know how each moment



An approach for detecting student perceptions of programming 9

Table 2. Results from our evaluation of the detection system

Moment Precision Recall F1 Score Count Human Errors

Using resources to look up syntax 82.0% 86.1% 84.0% 128 2
Using resources to research an approach 66.7% 66.7% 66.7% 21 1
Changing approaches 73.1% 73.1% 73.1% 26 8
Writing a plan 60.0% 75.0% 66.7% 15 0
Getting simple errors 99.1% 97.7% 98.4% 213 13
Getting Java errors 90.3% 90.3% 90.3% 31 2
Struggling with errors 69.2% 90.0% 78.3% 26 5
Stopping to think 79.1% 75.3% 77.2% 159 15

influences student self-efficacy, some of the less frequent moments may have a
stronger impact on student experiences than the more frequent ones.

One benefit of our approach is that our system’s decisions are transparent
and can be assessed using our qualitative codebook. This enabled us to conduct
an analysis on our system’s false positives and false negatives. First, our analysis
revealed many human errors in labeling, showing how challenging it is for humans
to accurately label this type of data and highlighting the value of an automated
system. Our analysis also revealed trends that provide direction for improving
the system. For example, 10% of the system’s incorrect decisions occured because
the researcher and system disagreed about the timing of a moment. When we
designed the codebook, we focused on describing the heuristics to determine
whether a moment occurred, rather than the exact start time for every moment.
As a result, our system had less information to help it choose start times. Many of
these moments occur over a period of multiple minutes, and therefore detection
within a wider range of times could be acceptable. In the future, we would suggest
either developing heuristics for determining start times during the qualitative
analysis or changing the evaluation to allow the system to select any time point
during the moment, as we did for struggling with errors.

Our analysis of the system’s incorrect decisions also revealed that particular
metrics were difficult to encode. For example, our system was not always able
to determine when a student had resolved a particular error, which is crucial to
detecting the struggling with errors moment. This can be quite complex, as stu-
dents exhibit a wide variety of behaviors when debugging. Another challenge we
encountered is that our system does not always have enough information to de-
termine the student’s purpose for using resources when it knows a using resources
moment occurred, resulting in a lower recall for using resources to research an
approach. Even though our metrics generally provided enough guidance for the
researcher, without human intuition or contextual understanding, the system
was less accurate in interpreting the variety of ways that students use resources.
With more development time, we could increase the accuracy of detection for
both of these moments, but it would require significant effort to fully model all
potential behaviors. While it is likely not possible to fully capture the variance
in student behavior in our models, our relatively high detection accuracy and
our concrete ideas for improvement show that this is a viable approach.



10 Gorson et al.

5 Conclusions

In this paper, we present a new approach for designing systems that detect stu-
dent perceptions of the programming process, called retrospective-enabled percep-
tion recognition. We apply this approach to develop an expert system to detect
programming moments that prompt students to negatively self-assess, building
on expertise gained through retrospective interviews with 41 CS2 students. We
evaluated our system with programming session data collected from an addi-
tional 33 CS2 students, finding that our system achieve F1 scores ranging from
66% to 98% for the eight self-assessment moments.

While we are encouraged by our system’s performance, this work has a num-
ber of limitations. First, our evaluation relies on researcher-assigned labels. While
we verified the labeling process through a formal qualitative analysis, researcher
labels may not perfectly represent student perceptions. Additionally, while we
believe the retrospective-enabled perception recognition approach can be applied
to other problems, more research is needed to understand how our expert sys-
tem generalizes. We developed and tested our system with students from just
one course and university, and our observations of student programming ses-
sions occurred in a lab setting. Furthermore, students worked on a limited set of
problems in one programming language. As a result, additional work is needed
to understand whether our system will generalize to a more naturalistic setting,
more diverse problems, and other programming languages.

While our results are promising, our models could likely be improved with
additional techniques for interpreting interaction log data. For example, nat-
ural language processing could help our system understand the semantics of
comments and web-page content, which the researchers used when labelling the
moments. Additionally, the success of this expert system suggests that this prob-
lem may be a good fit for machine teaching, an approach that empowers experts
to guide machines in learning to make decisions [50]. Future work should explore
whether the knowledge of student perceptions derived from the retrospective
interviews can inform a machine teaching algorithm and increase our ability to
detect student perceptions accurately.

Through retrospective-enabled perception recognition, we contribute a new
approach for combining qualitative methods and expert system design to detect
learning moments that students perceive as meaningful, which could generalize
to a number of problems and contexts. Furthermore, our system for detecting
negative self-assessment moments has the potential to enable new studies and
interventions that were not previously possible. In future work, we hope to use
this system to study the relationship between student behaviors, perceptions of
the programming process, and self-assessments. We also hope to develop real-
time feedback interventions to help students re-frame self-assessment moments
and improve self-efficacy.

6 Acknowledgements

This work was supported by NSF Grant IIS-1755628. Thank you to Delta Lab.



An approach for detecting student perceptions of programming 11

References

1. Ahadi, A., Lister, R., Haapala, H., Vihavainen, A.: Exploring Machine Learn-
ing Methods to Automatically Identify Students in Need of Assistance.
In: Proceedings of the eleventh annual International Conference on Inter-
national Computing Education Research - ICER ’15. pp. 121–130. ACM
Press, Omaha, Nebraska, USA (2015). https://doi.org/10.1145/2787622.2787717,
http://dl.acm.org/citation.cfm?doid=2787622.2787717

2. Anderson, J.R., Conrad, F.G., Corbett, A.T.: Skill acquisition and the LISP tutor.
Cognitive Science 13(4), 467–505 (1989), publisher: Elsevier

3. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
Lessons learned. The journal of the learning sciences 4(2), 167–207 (1995)

4. Bandura, A.: Self-efficacy mechanism in human agency. American psychologist
37(2), 122 (1982)

5. Bandura, A.: Self-efficacy: The exercise of control. Macmillan (1997)
6. Bandura, A.: Self-efficacy. The Corsini encyclopedia of psychology pp. 1–3 (2010),

publisher: Wiley Online Library
7. Berland, M., Martin, T., Benton, T., Petrick Smith, C., Davis, D.: Using learning

analytics to understand the learning pathways of novice programmers. Journal of
the Learning Sciences 22(4), 564–599 (2013)

8. Blikstein, P.: Using learning analytics to assess students’ behavior in open-
ended programming tasks. In: Proceedings of the 1st international con-
ference on learning analytics and knowledge. pp. 110–116. ACM (2011),
http://dl.acm.org/citation.cfm?id=2090132

9. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., Koller, D.: Pro-
gramming pluralism: Using learning analytics to detect patterns in the learning of
computer programming. Journal of the Learning Sciences 23(4), 561–599 (2014)

10. Corbett, A.: Cognitive computer tutors: Solving the two-sigma problem. In: Inter-
national Conference on User Modeling. pp. 137–147. Springer (2001)

11. Corbett, A.T., Anderson, J.R.: Locus of feedback control in computer-based tu-
toring: Impact on learning rate, achievement and attitudes. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. pp. 245–252. ACM
(2001)

12. Cross, J.H., Hendrix, D., Umphress, D.A.: JGRASP: an integrated development
environment with visualizations for teaching java in CS1, CS2, and beyond. In: 34th
Annual Frontiers in Education, 2004. FIE 2004. pp. 1466–1467. IEEE Computer
Society (2004)

13. Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., Saffrey, P.: Manipulating mindset
to positively influence introductory programming performance. In: Proceedings of
the 41st ACM technical symposium on Computer science education. pp. 431–435.
ACM (2010), http://dl.acm.org/citation.cfm?id=1734409

14. Edwards, S., Li, Z.: Towards progress indicators for measuring stu-
dent programming effort during solution development. In: Proceed-
ings of the 16th Koli Calling International Conference on Com-
puting Education Research - Koli Calling ’16. pp. 31–40. ACM
Press, Koli, Finland (2016). https://doi.org/10.1145/2999541.2999561,
http://dl.acm.org/citation.cfm?doid=2999541.2999561

15. Ehrlinger, J., Dunning, D.: How chronic self-views influence (and potentially mis-
lead) estimates of performance. Journal of personality and social psychology 84(1),
5 (2003), publisher: American Psychological Association



12 Gorson et al.

16. Ericsson, K.A., Simon, H.A.: Protocol analysis: Verbal reports as Data. MIT Press,
Cambridge, MA (1984)

17. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to design programs.
MIT press Cambridge (2001)

18. Fisher, A., Margolis, J.: Unlocking the clubhouse: the Carnegie
Mellon experience. ACM SIGCSE Bulletin 34(2), 79–83 (2002),
http://dl.acm.org/citation.cfm?id=543836

19. Flanigan, A.E., Peteranetz, M.S., Shell, D.F., Soh, L.K.: Exploring Changes in
Computer Science Students’ Implicit Theories of Intelligence Across the Semester.
pp. 161–168. ACM Press (2015). https://doi.org/10.1145/2787622.2787722,
http://dl.acm.org/citation.cfm?doid=2787622.2787722

20. Fuchs, M., Heckner, M., Raab, F., Wolff, C.: Monitoring students’ mobile app
coding behavior data analysis based on IDE and browser interaction logs. In:
2014 IEEE Global Engineering Education Conference (EDUCON). pp. 892–
899. IEEE, Istanbul (Apr 2014). https://doi.org/10.1109/EDUCON.2014.6826202,
http://ieeexplore.ieee.org/document/6826202/

21. Gorson, J., O’Rourke, E.: How Do Students Talk About Intelligence?
An Investigation of Motivation, Self-efficacy, and Mindsets in Computer
Science. In: Proceedings of the 2019 ACM Conference on International
Computing Education Research - ICER ’19. pp. 21–29. ACM Press,
Toronto ON, Canada (2019). https://doi.org/10.1145/3291279.3339413,
http://dl.acm.org/citation.cfm?doid=3291279.3339413

22. Gorson, J., O’Rourke, E.: Why do CS1 Students Think They’re Bad at Program-
ming? Investigating Self-efficacy and Self-assessments at Three Universities. In:
Proceedings of the 2020 ACM Conference on International Computing Education
Research. pp. 170–181 (2020)

23. Jadud, M.C.: Methods and tools for exploring novice compilation be-
haviour. p. 73. ACM Press (2006). https://doi.org/10.1145/1151588.1151600,
http://portal.acm.org/citation.cfm?doid=1151588.1151600

24. Kinnunen, P., Simon, B.: Experiencing programming assignments in CS1: the emo-
tional toll. In: Proceedings of the Sixth international workshop on Computing ed-
ucation research. pp. 77–86. ACM (2010)

25. Kinnunen, P., Simon, B.: CS majors’ self-efficacy perceptions in CS1: results in light
of social cognitive theory. In: Proceedings of the seventh international workshop
on Computing education research. pp. 19–26. ACM (2011)

26. Kinnunen, P., Simon, B.: My program is ok – am I? Computing fresh-
men’s experiences of doing programming assignments. Computer Science Ed-
ucation 22(1), 1–28 (Mar 2012). https://doi.org/10.1080/08993408.2012.655091,
http://www.tandfonline.com/doi/abs/10.1080/08993408.2012.655091

27. Köksal, M.F., Başar, R., Üsküdarlı, S.: Screen-Replay: A Session Recording and
Analysis Tool for DrScheme. In: Proceedings of the Scheme and Functional Pro-
gramming Workshop, Technical Report, California Polytechnic State University,
CPSLO-CSC-09. vol. 3, pp. 103–110. Citeseer (2009)

28. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a
study of developer work habits. In: Proceeding of the 28th interna-
tional conference on Software engineering - ICSE ’06. p. 492. ACM
Press, Shanghai, China (2006). https://doi.org/10.1145/1134285.1134355,
http://portal.acm.org/citation.cfm?doid=1134285.1134355

29. Lewis, C., Bruno, P., Raygoza, J., Wang, J.: Alignment of Goals and Per-
ceptions of Computing Predicts Students’ Sense of Belonging in Com-
puting. In: Proceedings of the 2019 ACM Conference on International



An approach for detecting student perceptions of programming 13

Computing Education Research - ICER ’19. pp. 11–19. ACM Press,
Toronto ON, Canada (2019). https://doi.org/10.1145/3291279.3339426,
http://dl.acm.org/citation.cfm?doid=3291279.3339426

30. Lewis, C.M., Anderson, R.E., Yasuhara, K.: ”I Don’t Code All Day”:
Fitting in Computer Science When the Stereotypes Don’t Fit. pp.
23–32. ACM Press (2016). https://doi.org/10.1145/2960310.2960332,
http://dl.acm.org/citation.cfm?doid=2960310.2960332

31. Lewis, C.M., Yasuhara, K., Anderson, R.E.: Deciding to major in computer science:
a grounded theory of students’ self-assessment of ability. In: Proceedings of the
seventh international workshop on Computing education research. pp. 3–10. ACM
(2011)

32. Lishinski, A., Yadav, A., Enbody, R.: Students’ Emotional Reactions to Program-
ming Projects in Introduction to Programming: Measurement Approach and In-
fluence on Learning Outcomes. In: Proceedings of the 2017 ACM Conference on
International Computing Education Research - ICER ’17. pp. 30–38. ACM Press,
Tacoma, Washington, USA (2017). https://doi.org/10.1145/3105726.3106187,
http://dl.acm.org/citation.cfm?doid=3105726.3106187

33. Lishinski, A., Yadav, A., Good, J., Enbody, R.: Learning to Pro-
gram: Gender Differences and Interactive Effects of Students’ Motiva-
tion, Goals, and Self-Efficacy on Performance. In: In Proceedings of the
2016 ACM Conference on International Computing Education Research.
pp. 211–220. ACM Press (2016). https://doi.org/10.1145/2960310.2960329,
http://dl.acm.org/citation.cfm?doid=2960310.2960329

34. Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M.: Pro-
gramming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance. In:
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
pp. 1449–1461. ACM Press (2016). https://doi.org/10.1145/2858036.2858252,
http://dl.acm.org/citation.cfm?doid=2858036.2858252

35. Marwan, S., Gao, G., Fisk, S., Price, T.W., Barnes, T.: Adaptive Immedi-
ate Feedback Can Improve Novice Programming Engagement and Intention
to Persist in Computer Science. In: Proceedings of the 2020 ACM Confer-
ence on International Computing Education Research. pp. 194–203. ACM, Vir-
tual Event New Zealand (Aug 2020). https://doi.org/10.1145/3372782.3406264,
https://dl.acm.org/doi/10.1145/3372782.3406264

36. Master, A., Cheryan, S., Meltzoff, A.N.: Computing whether she belongs: Stereo-
types undermine girls’ interest and sense of belonging in computer science. Journal
of educational psychology 108(3), 424 (2016), publisher: American Psychological
Association

37. Miura, I.T.: The relationship of computer self-efficacy expectations
to computer interest and course enrollment in college. Sex Roles
16(5-6), 303–311 (Mar 1987). https://doi.org/10.1007/BF00289956,
http://link.springer.com/10.1007/BF00289956

38. Munson, J.P., Zitovsky, J.P.: Models for early identification of struggling novice
programmers. In: Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education. pp. 699–704 (2018)

39. O’Rourke, E., Haimovitz, K., Ballweber, C., Dweck, C., Popović, Z.: Brain points:
a growth mindset incentive structure boosts persistence in an educational game.
In: Proceedings of the SIGCHI conference on human factors in computing systems.
pp. 3339–3348. ACM (2014)



14 Gorson et al.

40. O’Reilly, M., Parker, N.: ‘Unsatisfactory Saturation’: a critical exploration of
the notion of saturated sample sizes in qualitative research. Qualitative Re-
search 13(2), 190–197 (Apr 2013). https://doi.org/10.1177/1468794112446106,
http://journals.sagepub.com/doi/10.1177/1468794112446106

41. Perscheid, M., Siegmund, B., Taeumel, M., Hirschfeld, R.: Studying the advance-
ment in debugging practice of professional software developers. Software Qual-
ity Journal 25(1), 83–110 (Mar 2017). https://doi.org/10.1007/s11219-015-9294-2,
http://link.springer.com/10.1007/s11219-015-9294-2

42. Piech, C., Sahami, M., Koller, D., Cooper, S., Blikstein, P.: Modeling how stu-
dents learn to program. In: Proceedings of the 43rd ACM technical symposium on
Computer Science Education. pp. 153–160. ACM (2012)

43. Ramalingam, V., LaBelle, D., Wiedenbeck, S.: Self-efficacy and mental models in
learning to program. In: ACM SIGCSE Bulletin. vol. 36, pp. 171–175. ACM (2004)

44. Reiser, B.J., Anderson, J.R., Farrell, R.G.: Dynamic Student Modelling in an In-
telligent Tutor for LISP Programming. In: IJCAI. vol. 85, pp. 8–14 (1985)

45. Relich, J.D., Debus, R.L., Walker, R.: The mediating role of attribution and self-
efficacy variables for treatment effects on achievement outcomes. Contemporary
Educational Psychology 11(3), 195–216 (1986), publisher: Elsevier

46. Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bart-
lam, B., Burroughs, H., Jinks, C.: Saturation in qualitative research:
exploring its conceptualization and operationalization. Quality & Quan-
tity 52(4), 1893–1907 (Jul 2018). https://doi.org/10.1007/s11135-017-0574-8,
http://link.springer.com/10.1007/s11135-017-0574-8

47. Schunk, D.H.: Self-efficacy, motivation, and perfor-
mance. Journal of Applied Sport Psychology 7(2), 112–
137 (Sep 1995). https://doi.org/10.1080/10413209508406961,
https://www.tandfonline.com/doi/full/10.1080/10413209508406961

48. Shapiro, J.R., Williams, A.M.: The Role of Stereotype Threats in Under-
mining Girls’ and Women’s Performance and Interest in STEM Fields. Sex
Roles 66(3-4), 175–183 (Feb 2012). https://doi.org/10.1007/s11199-011-0051-0,
http://link.springer.com/10.1007/s11199-011-0051-0

49. Shenton, A.K.: Strategies for ensuring trustworthiness in qual-
itative research projects. Education for Information 22(2),
63–75 (Jul 2004). https://doi.org/10.3233/EFI-2004-22201,
https://www.medra.org/servlet/aliasResolver?alias=iospressdoi=10.3233/EFI-
2004-22201

50. Simard, P.Y., Amershi, S., Chickering, D.M., Pelton, A.E., Ghorashi, S., Meek,
C., Ramos, G., Suh, J., Verwey, J., Wang, M., others: Machine teaching: A new
paradigm for building machine learning systems. arXiv preprint arXiv:1707.06742
(2017)

51. Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs:
an empirical study. Communications of the ACM 26(11), 853–860 (Nov 1983).
https://doi.org/10.1145/182.358436, https://dl.acm.org/doi/10.1145/182.358436

52. Sonnentag, S.: Expertise in professional software design: A process study. Jour-
nal of applied psychology 83(5), 703 (1998), publisher: American Psychological
Association

53. Steele, C.M., Aronson, J.: Stereotype threat and the intellectual test performance
of African Americans. Journal of personality and social psychology 69(5), 797
(1995)



An approach for detecting student perceptions of programming 15

54. Veilleux, N., Bates, R., Allendoerfer, C., Jones, D., Crawford, J., Floyd Smith, T.:
The relationship between belonging and ability in computer science. In: Proceeding
of the 44th ACM technical symposium on Computer science education. pp. 65–70.
ACM (2013)

55. Watson, C., Li, F.W., Godwin, J.L.: No tests required: comparing traditional and
dynamic predictors of programming success. In: Proceedings of the 45th ACM
technical symposium on Computer science education. pp. 469–474 (2014)

56. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988), publisher: IEEE


