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Educational technology requires a delivery mechanism in order to scale. One method which has not yet
seen widespread use is the educational campaign: large-scale, short-term events focused on a specific ed-
ucational topic, such as the Hour of Code campaign. These are designed to generate media coverage and
lend themselves nicely to collaborative or competitive goals, thus potentially leveraging social effects and
community excitement to increase engagement and reach students who would otherwise not participate. In
this paper, we present a case study of three such campaigns we ran to encourage students to play an algebra
game, DragonBox Adaptive: the Washington, Norway, and Minnesota Algebra Challenges. We provide sev-
eral design recommendations for future campaigns based on our experience, including the effects of different
incentive schemes, the insertion of “tests” to fastforward students to levels of appropriate difficulty, and the
strengths and weaknesses of campaigns as a method of collecting experimental data.
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1. INTRODUCTION
Recent years have seen a surge of interest in educational technology as a means of
delivering scalable, adaptive content to students, especially those who have not his-
torically had access to high-quality resources [Guo and Reinecke 2014]. Massive open
online courses (MOOCS) have been especially popular, but researchers have developed
many other technologies that also qualify: intelligent tutoring systems [Anderson et al.
1995; Corbett et al. 1997; VanLehn 2006], adaptive curriculum content [Paramythis
and Loidl-Reisinger 2004; Shute and Towle 2003; Wauters et al. 2010], and educa-
tional games [O’Neil et al. 2005; Mayo 2009] are all examples of educational technolo-
gies meant to both scale and improve student engagement and/or learning outcomes.
The increasing availability of high-speed Internet has only accelerated this trend.

To encourage teachers and students to adopt and use educational systems, technolo-
gists must develop effective methods for packaging and delivering their content. In this
paper, we study a new method of delivering educational content at scale: the state- or
country-wide educational campaign. A campaign is a focused, widespread event where
students from many schools engage in an educational activity over a short timespan.
For example, in the Algebra Challenges we describe in this paper, students in grades
K-12 were challenged to solve as many algebraic equations as possible in the educa-
tional game DragonBox Adaptive over a week-long period. And while we will focus
primarily on educational technology, we believe that similar methods can be used by
others to distribute other types of technology benefiting from concentrated collabora-
tive or simultaneous use.

Campaigns are fundamentally different from typical methods used to deliver scal-
able educational technology. The simplest way to provide access to educational technol-
ogy is by making it freely available online and allowing interested teachers to incorpo-
rate it into their classrooms, an approach taken by intelligent tutoring systems [Cor-
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bett et al. 1997] or websites such as Khan Academy1. Another approach is to encourage
participation by directly replacing the traditional classroom with an educational tech-
nology: MOOCs, for example, have attracted massive numbers of learners from diverse
backgrounds with this approach [Breslow et al. 2013].

Unlike these other distribution mechanisms, campaigns explicitly use media and
publicity to encourage the participation of schools and classrooms that might not oth-
erwise seek out innovative educational technologies. They also typically involve sub-
stantial social interaction in the forms of both intra-classroom cooperation and inter-
classroom competition. These factors make campaigns a unique method of distributing
educational technologies, and have distinct advantages and disadvantages compared
to more common distribution mechanisms.

There have been few large-scale campaigns involving educational technology; as a
result, very little is known about their properties. In this paper, we explore data col-
lected during three Algebra Challenges we conducted in Washington state, Norway,
and Minnesota state. We describe how we iterated on the designs of our competitive
incentives and our adaptation to player ability between each of the three Challenges,
and analyze the resulting student outcomes. Based on analysis of the data from these
Challenges, we provide a set of design recommendations for researchers and prac-
titioners considering using similar campaigns as a method of delivering educational
technology to many students. In particular, we focus on how student behavior in an
educational game during our campaigns differs from behavior in games released to
free online websites, how the incentive structures can improve student engagement
but cause undesirable “gaming” behavior, the usefulness of inserting “pretest” levels
to allow students to skip content they may already know, and advantages and dis-
advantages of using campaigns as an experimental platform to conduct educational
research.

2. LARGE-SCALE CAMPAIGNS
In this work, we present a case study of three large-scale educational campaigns that
we conducted on the topic of algebra. We define campaigns as events designed to en-
courage a large number of students to use an educational technology over a short pe-
riod of time. Campaigns are designed to run at a state-wide or country-wide scale, at-
tracting a large, diverse population of students. They are promoted through media and
press releases, and possibly supported by visible figures such as politicians or industry
leaders, as a way to recruit participants. Due to their limited timeframes, campaigns
are designed to target a specific educational topic.

These types of educational campaigns have multiple goals. One goal is to generate
awareness about both the educational technology being promoted and the organization
that runs the event. Another goal is to motivate students and create excitement around
the targeted educational topic. Educational campaigns are also designed to teach stu-
dents during the event, and may have defined learning goals such as helping students
achieve mastery on a certain concept or skill. Finally, large-scale campaigns can gen-
erate extensive data showing how a diverse population of students learns a topic or
uses an educational technology. As a result, campaigns can be used as an opportunity
to conduct controlled experiments on student learning.

The concept of using a short-term large-scale campaign for a targeted purpose is
not new. A similar format has been used extensively to raise awareness about wide
variety of topics, from eating disorders2 to bullying3. Awareness campaigns typically

1http://www.khanacademy.org/
2http://www.http://nedawareness.org
3http://www.bullyingawarenessweek.org/
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focus on information dissemination, with the goals of educating the public about a par-
ticular topic, encouraging behavior change, and raising money to support related re-
search. One of the most well-known awareness campaigns is Breast Cancer Awareness
Month4, which was founded in 1985. Primarily focusing on awareness and fundraising,
Breast Cancer Awareness Month includes walks for the cure, fundraising events, and
extensive publicity and media events. As one example, the National Football League
runs “A Crucial Catch Day” to promote breast cancer awareness by having players,
coaches, and referees wear pink game apparel5. Studies show that Breast Cancer
Awareness month helped increase the number of breast cancer diagnoses [Jacobsen
and Jacobsen 2011], and a comparative study shows that the large scale and exten-
sive publicity of Breast Cancer Awareness Month has made it more effective than the
smaller-scale Bowel Cancer Awareness Month [Pullybank et al. 2002].

While health-related awareness campaigns are the most well-known campaigns, this
model has been used to promote formal educational goals as well. Geography Aware-
ness Week6 uses the campaign model to encourage teachers to focus on geography-
related lessons during one week in November. More recently, educational technology
has begun to appear in campaigns. For example, approximately six months after our
Washington Algebra Challenge, Code.org ran the Hour of Code7 campaign and encour-
aged students across the United States to participate in an hour-long programming
activity during Computer Science Education Week. Code.org partners also created 20
hours of interactive tutorial activities that teachers and students could choose from8.
Unlike the Algebra Challenge campaigns we discuss in this work, the Hour of Code
campaign focused on outreach instead of specific learning goals: on this measure they
were highly successful, with 15 million students in 170 countries completing an hour
of code during the one-week campaign9.

Campaigns hold promise as a delivery vehicle for scalable educational content, but
in this context are essentially unstudied. To the best of our knowledge, this work repre-
sents the first in-depth analysis of a large-scale campaign entered around educational
technology. In this paper, we detail both the logistical and technical considerations of
running this type of event, and discuss key findings from three campaigns of our own:
the Washington, Norway, and Minnesota Algebra Challenges. We discuss lessons we
learned through the process of organizing these campaigns, and present design rec-
ommendations for other researchers or organizations interested in conducting similar
events.

3. EDUCATIONAL TECHNOLOGY DISTRIBUTION METHODS
Educational technology has been developed and studied for decades; however, the in-
creasing availability of high-speed Internet has recently made it feasible for free ed-
ucational systems to scale to massive numbers of students. There are a number of
methods of providing access to educational technologies and encouraging students to
use these types of resources. In this section, we describe existing methods of distribut-
ing content at scale, and discuss the advantages and disadvantages of each technique
compared to the large-scale educational campaign method that we study in this work.
It is important to note that we are more interested in the distribution mechanism
than the content or technology delivered; the distinction has not always been made

4http://www.nationalbreastcancer.org/breast-cancer-awareness-month/
5http://www.nfl.com/pink
6http://www.geographyawarenessweek.org
7http://code.org/hourofcode
8http://codeorg.tumblr.com/post/73414288834/2013update
9http://codeorg.tumblr.com/post/70175643054/stats
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clear in previous research, but in general most forms of educational technologies could
be delivered through most of these distribution methods.

3.1. Purchased Software
The traditional method of distributing educational technology is as downloadable soft-
ware that can be installed and run on computers in either a school or at home by
purchase. This is the method that has historically been used to provide access to in-
telligent tutoring systems (ITSs). These advanced systems emulate one-on-one human
tutoring using a cognitive model of the knowledge acquisition process [Anderson et al.
1995]. They are designed to help students as they work to master new problem-solving
skills in a given domain. Most ITSs are intended to be used as a part of a course, and
students are expected to have access to a textbook, an instructor, and possibly other
resources [VanLehn 2006]. ITSs have been evaluated in the classroom with success; for
example, students have shown significant learning gains when using ITSs as compared
to paper-and-pencil activities in both algebra [Koedinger et al. 1997] and physics [Van-
lehn et al. 2005]. These systems were originally developed before the advent of the
Internet, and were designed to be run as desktop applications.

Schools and school districts also buy other types of educational software, such as
reading programs, math games, or typing programs. Unfortunately, the market for
such software and other educational tools can be hostile, especially to small groups
and entrepreneurs [Foray 2011]. One of the primary reasons for this is that the ef-
fectiveness of popular software is often mixed, increasing suspicion among potential
buyers: the popular algebra program I Can Learn was shown to raise test scores [Bar-
row et al. 2008], while the popular reading program Fast ForWord did not lead to
increases in broader language acquisition or reading skills [Rouse and Krueger 2004].
Unfortunately, evaluating educational technology is expensive even for researchers, let
alone educational companies, since they require developing relationships with decision
makers at the school level, creating assessments, and organizing and analyzing the
experiment [Chatterji and Jones 2012]. Similarly, selling and deploying such software
can be challenging due to market fragmentation, differences in procurement meth-
ods between school districts, diverse curricula, and slow purchase cycles [Council of
Economic Advisers 2011]. These and other factors, such as the propensity for running
small resource-consuming pilots when start-up companies need larger deployments
to remain viable, make it difficult for new entrants to create and market educational
software [Berger and Stevenson 2007].

Campaigns serve a fundamentally different purpose from traditional methods of
distributing software. They can avoid some of the problems plaguing the traditional
educational software market, primarily due to their short duration and the fact that
participation is free. This bypasses procurement problems that make selling software
to idiosyncratic school districts difficult [Council of Economic Advisers 2011], and also
involves a type of time-pressure and social incentive for schools to participate in an
“exciting event” that is not usually present for purchased software. Campaigns should
thus be considered a new tool for distributing educational technology, with different
properties than existing methods. Intriguingly, their characteristics may make them
useful for addressing some of the problems in current software markets: it may be
possible to use them to run relatively inexpensive, large-scale studies or pilot tests to
study their effectiveness or convince school districts to buy the underlying technology.
We will touch on their viability as experimental vehicles later in this paper, but much
research remains to be done.
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3.2. Websites and Apps
Nowadays, one of the most common methods of releasing educational technology is
through freely accessible webpages. Arguably the most popular of these websites is
Khan Academy, which follows this model to deliver lectures and scaffolded exercises to
students. We are not aware of any controlled studies of Khan Academy’s educational
effectiveness, though preliminary research by SRI International suggests that its use
is associated with increased student test scores [Murphy et al. 2014]. The same study
mentions that though Khan Academy is primarily used on an individual basis, its
use as a supplemental resource in classrooms is increasing: the authors discovered
that teachers use a variety of different methods to integrate Khan Academy materials
within their classrooms.

Educational video games, which have experienced a surge of interest in recent years,
are another type of technology that is typically delivered through free websites or app
stores. Their popularity is in part due to their ability to engage players and motivate
them to perform complex, time-consuming tasks [Gee 2008], and in part due to the
observation that learning is an essential part of gameplay [Gee 2008; 2005]. In con-
trast, traditional education has been criticized for only successfully engaging a small
portion of students [Skinner and Belmont 1993]; as a result, there is a growing inter-
est in leveraging games to address the problem of student motivation in educational
environments [Gee 2008; O’Neil et al. 2005; Mayo 2009].

Campaigns tend to be more top-down events in which schools and teachers encour-
age students to participate for a short period of time on a focused topic. Thus, like
content available freely or cheaply online, they are likely to be used in a supplemental
fashion. Unlike online content, however, campaigns are also designed to increase stu-
dent motivation and excitement through social pressure and collaborative or competi-
tive rewards for participation. That is, they “push” content to students more, compared
to the usual “pull” model of a student choosing to visit a website or download an app
to view content.

3.3. Structured Online Courses
Over the past few years, Massively Open Online Courses (MOOCs) have become the
central focus of discussions about learning at scale. These courses are designed to re-
place traditional classrooms with massive online classrooms, hopefully enabling the
participation of diverse groups of students who have not previously had access to
high-quality post-secondary education [Breslow et al. 2013]. Hundreds of thousands
of students have earned certificates through MOOCs in diverse topics such as music,
systems biology, and computer science [Lewin 2012]. In contrast, campaigns are much
more limited in scope, and are not designed to replace traditional classes in any sense.
Thus they do not have lecturers or staff, as MOOCs do, and do not necessarily need
to assign grades or credit for work completed (though they can do so if the campaign
is run as a competition). More fundamentally, campaigns are by their nature exciting
community-wide events, and one of their primary goals is to generate student interest
in a particular topic. MOOCs are less concerned with this sort of outreach, and more
about teaching already-interested students deep knowledge about a topic.

4. THE ALGEBRA CHALLENGES
This paper is primarily a case study about three campaigns we ran: the Washing-
ton, Norway, and Minnesota Algebra Challenges. These campaigns were run sequen-
tially, in order to give us a chance to make changes and improve outcomes from one
to the next. We will first describe the educational game delivered to students through
the campaign, DragonBox Adaptive, then give some basic information about the cam-
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paigns themselves and how their structures differed. Later, we will take a closer look
at the data we gathered during the Algebra Challenges and offer design advice to other
researchers considering such campaigns, either as ways to deliver educational content
or as experimental platforms for studying educational interventions.

4.1. DragonBox Adaptive
For the educational content delivered through our Challenges, we used a game called
DragonBox Adaptive [Center For Game Science 2014], evolved from the original game
DragonBox [We Want To Know 2014]. The game is designed to teach algebra for all
students in the K-12 spectrum, and can be seen in Figure 1. Each level represents
an algebra equation to solve, with left and right sides filled with cards that represent
numbers and variables. The key card is the Dragon Box, which must be isolated on
one side for the player to win (much like X in an algebraic equation). Players can
perform algebraic operations by simplifying cards in the equation area (e.g., ‘-a+a’ →
‘0’), eliminating identities (e.g. ‘0’→ ‘ ’), or using cards in the deck at the bottom of the
screen to add, divide, or multiply both sides.

An important concept in the version of DragonBox Adaptive we used in the Algebra
Challenges is mastery, one of our outcome measures. Students demonstrated mastery
by successfully answering a series of three test levels designed to look very similar to
standard paper-and-pencil algebra problems. An example of one of these tests can be
seen in Figure 1(b). Test levels offered no hints, did not force students to keep both
sides balanced, and allowed students to submit answers at any time. Furthermore,
students had to submit correct answers to three tests in a row under a certain time
limit in order to achieve mastery. We will see in Section 5.4 that students were largely
unable to pass these tests when randomly given out early in the game, but had much
better success rates when given sufficient practice; thus, at the very least, students in
the Challenges improved at solving these mastery test levels.

As the name implies, DragonBox Adaptive differs from its parent game, DragonBox.
The primary difference is adaptivity: depending on how they performed on embedded

(a) Simple (b) Mastery

Fig. 1: Screenshots of DragonBox Adaptive, c©(2013) UW Center for Game Science /
WeWantToKnow AS [We Want To Know 2014]. Figure 1(a) shows an early level of the
game with the equation a-b=-6+a+x. The DragonBox, on the bottom right, must be
isolated on one side to pass the level. The game increases in complexity and gradually
begins to look more like standard algebra, as can be seen in one of the mastery test
levels in Figure 1(b).
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Location # Users Time Mastery Partner Start End
(sec.) (all/1.5h)

Washington 4200 4199 52%/96% Technology
Alliance

2013-06-03 2013-06-08

Norway 36100 7375 65%/96% We Want
to Know

2014-01-12 2014-01-17

Minnesota 6900 3698 48%/96% Technology
and Infor-
mation
Education
Services

2014-02-03 2014-07-01

Table I: Some basic statistics about the three campaigns we ran. Note that the bulk of
Minnesota players played in the first week. Time is the average length of time players
were actively playing. The two mastery rates are the overall rate, and rate among
students who actively played at least 1.5 hours (the length of time we asked teachers
to devote). More in-depth discussion and statistical analysis will be given in Section 5.

assessments, students were given different sets of dynamically-generated problems for
additional practice. These assessments measured overall success, time to completion,
and number of required actions to make these decisions. Furthermore, there were two
types of assessment levels: those which looked and functioned like normal levels with
in-game scaffolding, and the test levels mentioned above that looked like algebra prob-
lems and had no scaffolding.

All three Challenges gave mastery test levels at a particular point in the progression
(about 50 levels in), and if the player failed the test they were sent backwards in the
progression to play a few more levels before trying the test again. This additional
practice usually amounted to about three levels, though occasionally could be more if
a student performed very poorly. Norway and Minnesota were enhanced with a second
set of even more difficult mastery tests; again, if students failed the tests we generated
new practice problems for them.

All three Challenges also made use of the assessments that looked like regular game
levels. In Washington, these levels were restricted to later on in the progression just
before the mastery tests, so that all their extra practice tended to be extra levels in-
volving relatively difficult concepts. In Norway and Minnesota we added more of these
assessments for even basic concepts, so that students who needed additional practice
early had the opportunity to play extra levels. In all cases, we used a “generative”
adaptivity where new problems were generated for each student depending on which
assessment they failed; this is in contrast with the common tutoring system strategy
of drawing from an existing and finite pool of problems.

4.2. Algebra Challenge overview
We ran three Challenges in sequence: Washington, Norway, and Minnesota. Washing-
ton and Norway were designed to run for one week, and while we set a long cutoff date
for Minnesota, the bulk of the activity occurred during the first week there, as well.
To recruit teacher and student participants, we partnered with different organizations
with existing connections to schools: we did not pay them, and indeed in some cases
they paid us. In general, we found that it was quite easy to find teacher organizations
and educational technology promotion groups eager to run these types of campaigns.
These groups contacted all interested teachers through mailing lists, bulletins, social
media, or through word-of-mouth. We did not place any grade restrictions on signups,
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Fig. 2: The Algebra Challenges included a great deal of supporting infrastructure,
including the “Challenge Dashboard.” This website functioned as a leaderboard that
teachers and administrators could use to track mastery, number of equations solved,
and play time at the class, school, or district level. Furthermore, teachers were able to
track student progress within their own classroom.

so we received a wide spread of students. Future campaigns with specific pedagogical
goals may wish to target content towards a particular grade; we do not know how easy
or difficult this would be, but imagine that schools would be less eager to participate if
only a fraction of students are allowed to participate. We also had some media cover-
age and promotion by political figures: for example, we received a letter of support from
Washington Governor Jay Inslee, and the Norwegian Digital Learning Arena tweeted
a video of the Norwegian Prime Minister, Erna Solberg, playing DragonBox Adaptive
as part of the Challenge. This support may have lent legitimacy to our efforts and
increased participation, though the strength of this effect is difficult to measure.

Before examining more specific information about the Challenges, what makes cam-
paigns successful overall? We are not equipped to answer this question with certainty,
but can speculate. Certainly the Algebra Challenges had a great deal of supporting
infrastructure, such as collaborative or competitive goals and websites to track stu-
dent or class progress, registration and organization pages, and server architecture.
The Challenge Dashboard seen in Figure 2 seemed quite popular among teachers, for
instance. Yet at the end of the day the primary consideration for any campaign is how
many schools, teachers, and ultimately students choose to participate.
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Our sense from communications with politicians, technology advocacy groups, ad-
ministrators, and teachers, is that everyone benefited in different ways. Politicians
could generate positive press with their association with an innovative, large-scale
educational effort. Advocacy groups could both tout the benefits of educational tech-
nology and increase their own influence by adding a major campaign to their list of
accomplishments. Teachers and schools seemed excited to generate enthusiasm among
students by being part of a “big” event involving an educational game. For everyone,
the Challenges inspired a sense of being a part of a cutting-edge, important project run
by a prestigious research institution. In addition, even though the content was experi-
mental and not guaranteed to deliver learning gains, the limited time commitment and
use of a modified popular algebra game, which students would enjoy regardless, meant
there were few potential downsides. If true, this argues in favor of both short-duration
and game-based campaigns when content is relatively untested.

Another important question to ask is the following: how easy would it be for other
groups to run such campaigns? This is very difficult for us to answer. From our perspec-
tive, running the Challenges required some amount of effort and coordination, but was
not tremendously difficult. The most important part, teacher recruitment, was mostly
handled by other parties, such as the press generated by politicians or mailing lists
of the technology groups we partnered with. At the same time, our group is relatively
well-known for other projects, has well-connected funders, and was using an advanced
version of a popular existing math game. If none of these factors had been in play, we
may not have been able to convince these groups that the effort of running such events
would have been worthwhile. We doubt, for example, that a research team consisting
of five people with no existing infrastructure, connections, or credentials would be able
to run a successful campaign. Speculation aside, the best way to answer this question
is for other research groups to attempt to run their own campaigns and report their
experiences.

Now that we have covered our general observations about running campaigns, some
basic statistics about the Challenges themselves can be seen in Table I. As a reminder,
“Mastery” refers to the ability of players to pass three difficult test levels in a row, un-
der a certain time limit. Since many of these players failed to reach mastery because
they did not play long enough, we also include mastery rates for students who played
at least the 1.5 hours we requested of students. These are quite high, but we note
that this is no guarantee that if students who stopped were compelled to play longer
they would reach similar rates of mastery. Another important point is that higher play
times are not necessarily better: they could be indicative of more engagement, but
could also reflect an excess of time spent on easy problems. For example, the aver-
age time to mastery in the Washington, Norway, and Minnesota Challenges was 2626,
2820, and 2515 seconds, respectively: thus, the Minnesota Challenge may have been
more efficient in some sense. That being said, the data in the table suggest that Nor-
way was a clear outlier both in terms of scope and player behavior. There are several
possible explanations for the difference in time played and mastery rate in Norway as
compared to Washington and Minnesota. Since this is a case study and many variables
changed each campaign, we cannot definitively answer this question, though we can
still examine individual hypotheses.

One possible explanation is that Norway students tended to be older, as can be seen
in Figure 3. We can test this hypothesis by running an ANCOVA on Time Played (in
seconds) with independent variable Location and covariate Grade. There is a signifi-
cant difference between the three Algebra Challenges (F (2, 47197) = 250.154, p < .000),
while the association between Time Played and Grade is not significant (F (1, 47197) =
1.361, p = .243), suggesting that the population age is not the sole driver of the in-
crease. Only 2.8% of the variance is accounted for by Location, controlling for Grade

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Y. Liu et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Grade 

Proportion of players by grade 

WA

NO

MN

Fig. 3: The average grade levels for Washington, Norway, and Minnesota are 5.9, 7.2,
and 6.4, respectively. An ANOVA shows these differences are significant (F (2, 47198) =
1335.626, p < .000). The mean Norway grade is higher than Minnesota’s (p < .000) and
Washington’s (p < .000), and the mean Minnesota grade is higher than Washington’s
(p < .000). This is a potential confound to keep in mind.

(R2 = .028), so other unmeasured factors may be responsible. To complete the analysis,
we also find that Norway students (Mean=7375 seconds) play statistically significantly
longer than Washington (Mean=4199 seconds) and Minnesota students (M=3698 sec-
onds) at the .01 level (p < .000), while the difference in Time Played between Washing-
ton and Minnesota is not significant at the .05 level (p = .058).

Another intriguing possibility has to do with how we encouraged participation. The
incentive scheme in Norway was different than the one used in Washington, and poten-
tially more motivating; Minnesota had no incentive scheme at all. Could the change
in incentive structure explain why students in Norway played longer than those in
Washington and Minnesota? We will analyze the data in light of this hypothesis in
Section 5.2.

5. LESSONS
Campaigns seem like a promising way to deliver certain types of educational tech-
nology to many students. To help other researchers or organizations who wish to run
similar events, we will share some of our observations from the Algebra Challenges.
We will discuss potential differences between student data generated by campaigns
compared to free game websites, the effects of different incentives on student behavior,
what factors we observed were important to account for if attempting to run a ran-
domized experiment in a campaign, and the results of one randomized study we ran in
the Minnesota Algebra Challenge when attempting to fastforward students through
content using early mastery tests.
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5.1. Comparison to Online Educational Game Releases
To better understand how campaigns function as a mechanism for distributing educa-
tional technology and encouraging participation from a broad population of students,
we were interested in comparing the DragonBox data collected during our campaigns
to data collected from educational games released through online game portals. This
type of analysis allows us to highlight features of campaigns that make them differ-
ent from standard distribution methods, and define the properties that educational
systems must have to be appropriate for distribution through a large-scale campaign.

DragonBox Adaptive has not been released on any free online game portals and the
maker of the original game DragonBox does not track engagement statistics, so we are
unable to directly compare student behavior in this game across distribution methods.
However, many other educational games have been released online, so we can compare
high-level features of the data collected with these games to data collected with Drag-
onBox Adaptive through our campaigns. This will give us an initial understanding of
the differences between free game portals and campaigns as a distribution method for
educational games.

In this analysis, we compare the Algebra Challenge data to data collected with
games released to the popular educational website BrainPOP10. BrainPOP provides an
educational games portal designed for use in the classroom, where games can be freely
accessed at any time. We look at three popular BrainPOP games: Refraction11, which
teaches fraction concepts through splitting lasers, and Treefrog Treasure12 and Bat-
tleship Numberline13, which both teach number line concepts. All three games were
developed for research purposes, and student behavior in each game has been studied
extensively [Lomas et al. 2013; O’Rourke et al. 2013].

Students who participated in the Algebra Challenge played DragonBox for much
longer periods of time on average than students played the other three educational
games on BrainPOP. In the Washington, Norway, and Minnesota Challenges, students
played for a median time of 54 minutes, 82 minutes, and 47 minutes respectively.
In comparison, published literature suggests students on BrainPOP play Refraction
for a median of 3 minutes [O’Rourke et al. 2013], Treefrog Treasure for a median
of 8 minutes [O’Rourke et al. 2013], and Battleship Numberline for a median of 2-3
minutes [Lomas et al. 2013] (reported numbers in this paper are reaction times, so
true time played is higher).

We caution that these numbers cannot be directly compared, given that the under-
lying games are different. Furthermore, it is not easy to track students on free game
websites across different sessions without login information, so most research on free
online games measures time played during the first session only. We have no such
problem tracking across sessions in our Challenges and so can measure complete time
played. With these caveats in mind, there are good reasons to believe that students
may play more seriously in campaigns compared to online games. Teachers may plan
for students to play the educational game for a set period of time during class when
participating in a campaign, for example. There may also be effects from collaborative
goals or rewards for campaign winners, though we note that students still played quite
long in the Minnesota Challenge, in which there were no explicit incentives. Whether
or not campaigns truly promote greater engagement than online distribution methods,
and exactly how students use the technology differently depending on the distribution
method, are questions we leave for future research.

10http://www.brainpop.com/
11http://www.brainpop.com/games/refraction/
12http://www.brainpop.com/games/treefrogtreasure/
13http://www.brainpop.com/games/battleshipnumberline/
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Location Collaborative Competitive Prizes
Washington 250,000 equations,

Class mastery
Class mastery One tablet per grade per

class size
Norway 400,000 equations,

Class mastery
Equations solved One tablet per student of

the winning class
Minnesota 250,000 equations,

Class mastery
None None

Table II: Incentive structures in the Algebra Challenges. The collaborative goal was a
target number of equations to be solved across all students participating in the cam-
paign, and progress towards the goal was listed on the campaign website. The com-
petitive goal was a reward given to classes that had the highest mastery rates (in
Washington) or the most equations solved (in Norway).

Another difference between the data collected during the Algebra Challenges and
through online game portals is the type of demographic data collected. During the
Challenges, we were able to collect gender, grade, and school information about stu-
dents, given by teachers when they registered their classes. This data is likely to be
reliable because it is entered by teachers rather than students, in stark contrast to
the data collected through online educational game portals. O’Rourke et al. note that
it is challenging to collect demographic data from students who play games on Brain-
POP [O’Rourke et al. 2014], and demographic information is not presented in any of
the work studying Refraction, Treefrog Treasure, or Battleship Numberline [Lomas
et al. 2013; O’Rourke et al. 2013; Andersen et al. 2011]. We have tried collecting de-
mographic information in educational games released online through embedded, skip-
pable questionnaires, but have found that these surveys cause the majority of players
to quit; more complex methods, such as giving players the opportunity to enter demo-
graphic information to compare their responses to similar players’ responses [Reinecke
and Gajos 2014], may be required.

These comparisons show that it is easier to collect “complete” data through cam-
paigns than free online games. That being said, campaigns are also more expensive
to conduct. By our estimates, each campaign cost around $45,000 to conduct, while
releasing a game to an online portal is free. However beyond just the cost, there are
other features of campaigns that educational technologists should consider. Since par-
ticipants play for a very long time on average, the content of the educational technology
being distributed must be extensive enough to support multiple hours of play. Depend-
ing on the stated goals of the campaign, near-infinite content may be desirable. In
the Norway Challenge, for example, classes were rewarded for completing the largest
number of equations: this meant that DragonBox Adaptive needed to support an in-
finite amount of play time to fairly support this competition. We accomplished this
by procedurally generating levels from templates, to ensure that students could con-
tinue playing for as long as they wanted; indeed, one student in Norway played almost
23,000 levels.

Even without such outliers, the fastest 5% of players in the Norway Challenge
achieved mastery in 64 levels, while the slowest 5% of players achieved mastery in
224 levels. If such content generation or adaptivity is not possible, organizers of cam-
paigns may wish to promote completion of the content instead of duration or volume of
interaction; however, our experience suggests that having generative adaptivity may
be useful to accommodate the wide spread of student abilities.
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5.2. Incentives
Educational technology is only valuable if students feel motivated to use it. Incentives
for using a given system can vary widely. Students may have a desire to learn, may
be seeking accreditation in the form of a badge or certificate, may enjoy the activity, or
may be encouraged or pressured to participate by teachers, parents, or peers. Luckily,
campaigns are uniquely suited to take advantage of many of these incentives. In our
three Algebra Challenges, we used a mix of incentives not frequently found in other
methods of delivering educational content at scale. In each Challenge, we set a collab-
orative goal of solving a certain number of equations across all participants. We also
experimented with different types of competitive goals in the Washington and Norway
Challenges as a way to leverage peer excitement and peer pressure at the classroom
level to increase student engagement.

The incentives we used for each campaign can be seen in Table II. There are a num-
ber of differences between the competitive incentives used in Washington and Norway.
In Washington, we incentivized mastery rate, or students’ ability to reach a certain
point in the game. We chose to reward mastery because the educational goal of the
Challenge was to help students master algebra concepts. We awarded one tablet to the
classes that had the highest overall mastery rate at each grade level. In addition, some
classes had many more students participate than others, and it seemed unfair to com-
pare large classes to small ones. We therefore awarded prizes to one class of each size
(extra small, small, medium, or large) at each grade level, for a total of four winning
classes in each of the grades K through 12.

In Norway, the sponsors requested we change the incentive structure to instead re-
ward the total number of equations solved by each class. The goal of this modification
was to reward behaviors that students could see and directly control. It is very clear
when a student solves an equation, because this is equivalent to completing a level
in the game; mastery, on the other hand, is a much more nebulous concept that was
more difficult for students to grasp and work towards. This idea is similar to one pro-
posed by Fryer, who found that giving students financial incentives for reading books
significantly improved outcomes, while providing the same incentives for either in-
creasing classroom grades of state test scores produced no significant improvement
[Fryer 2011]. We therefore hypothesized that a similarly concrete incentive structure
might be more effective in our campaigns. We further decided to reward only the single
class that solved the most equations, and we gave each student in the winning class a
tablet; this was designed to increase the personal incentive for students to play.

As seen previously, the descriptive statistics in Table I and the ANCOVA results
from Section 4.2 immediately suggest two possible conclusions. First, we found no sig-
nificant change in how long students played between the Washington and Minnesota
Algebra Challenges even after controlling for grade. Given that we did not advertise
any incentives in Minnesota at all, this calls into question the usefulness of the Wash-
ington incentive model. Second, students in Norway put much more time into the Chal-
lenge: they played for a much longer period of time on average, even when controlling
for grade. This suggests that the more personalized and direct incentive structure may
have been effective at influencing student behavior.

We caution that the higher time played and mastery rate during the Norway Chal-
lenge could be the result of any number of factors. Perhaps the schools involved in
the campaign were richer, or maybe DragonBox is better-known in Norway. Unfor-
tunately, it is difficult to study the impact of different incentive schemes, because it
is challenging to conduct randomized experiments in campaigns. We cannot run two
simultaneous campaigns in the same schools and same location with different incen-
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Fig. 4: Differences in player outcomes persist even when accounting for the fact that
Norway students were older.

tive schemes, for example. Thus all analysis that follows should be taken primarily as
suggestions for future research directions, possibly in a more controlled environment.

Caveats aside, the time played and mastery rate in the Norway Challenge are en-
couraging, and suggest that our equation-based competitive incentive structure may
have been effective. For example, in Norway approximately 44% of levels played
were played outside of regular school hours; in Washington, this figure was a still-
respectable but lower 21%. However, the effects were not all positive. We also uncov-
ered evidence of undesirable behavior while performing statistics to find the winning
classroom. In the Washington and Minnesota Challenges, the maximum number of
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Location Egregious skipping Any skipping
Washington 0 students (0%) 7 students (0.2%)
Norway 2111 students (5.8%) 10133 students (28%)
Minnesota 0 students (0%) 0 students (0%)

Table III: Occurrence of intentional failure by “skipping” a problem (submitting an
answer without making any moves) This is an example of undesirable “gaming the
system” behavior, potentially a side effect of the Norway incentive scheme rewarding
total levels completed and giving tablets to each student of the winning class.

levels played by any single student were 1,634 and 3,000, respectively. In Norway,
however, 90 players played more than 3,000 levels, and the maximum number of levels
played was 22,960. This far exceeded the amount of practice we desired from students,
and strongly affected the total class equation counts used to determine the winner.

When we examined the data more closely, we discovered that some players were
“gaming the system.” There were two different types of gaming behavior that we ob-
served. The more mild form involved players submitting incorrect answers to game
levels. This behavior would cause the game to restart the level with a potentially eas-
ier format, allowing students to boost their numbers of equations solved by completing
many easy levels. The more egregious form of gaming behavior involved players delib-
erately failing a mastery test, causing them to be sent back to easier levels that could
be solved very quickly before reaching (and failing) another mastery test. In other
words, these players used the ability to replay easier levels to artificially inflate the
number of equations solved.

A natural question is whether this type of gaming behavior occurred at the same
rate in all three Challenges, or whether the rate was elevated during the Norway
Challenge. A reasonable proxy for intentionally giving up on a regular game level (mild
gaming) or a mastery test (egregious gaming), is to measure how often participants
submit an answer without having made a single move. Table III shows the number and
percentage of players who engaged in this behavior at least once for arbitrary levels or
mastery levels. Given that almost no intentional failure occurred in either Washington
or Minnesota, it seems highly likely that this undesirable gaming behavior occurred
as a direct result of the different incentive structure used in the Norway Challenge.

While these results are suggestive, more research is needed to understand how best
to incentivize participation in these types of campaigns. We were not able to determine
from this analysis whether rewarding individual over joint achievement was more im-
portant, or rewarding total levels completed rather than mastery rate was more im-
portant. Furthermore, while a sizable portion of students in the Norway Challenge
engaged in gaming behavior, the majority did not. It is possible that there is a way to
retain the gains in time played and mastery for the majority of the population, while
reducing opportunities to game the system. Can the game rules be structured to con-
tinue to offer additional support for struggling players while punishing intentional
player failure? Or can we detect gaming behavior when it happens, as has been tried
in Intelligent Tutoring System [Baker et al. 2004]? Regardless of the answers to these
questions, the results from our analysis suggest that some types of incentives can af-
fect student engagement and participation in campaigns; thus, these incentives must
be designed carefully to encourage desirable behaviors.

5.3. Campaigns as an experimental platform
Educational software is increasingly being used to run experiments, as has been the
case in the e-commerce and game industries for a long time [Kohavi et al. 2007]. No-
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tably, several studies using data drawn from educational games have been published
in the past few years (ex. [Lomas et al. 2013; Liu et al. 2014]). Previous researchers
have considered using online experiments, combined with more traditional sources, to
construct new types of experiment frameworks [Stamper et al. 2012]. Challenges could
conceivably be used for this purpose as well, but have their own unique set of strengths
and weaknesses relative to other content delivery mechanisms.

Clear strengths of campaigns as experimental platforms are as follows:

— Relatively high rate of data (36,000 players in Norway over 5 days).
— Enhanced persistence of students compared to games released on free educational

websites.
— Access to some demographic information about students, entered by teachers (note

that this mitigates a key drawback of internet data, which generally does not contain
rich data [Stamper et al. 2012]).

— Relative ease of some randomization and data collection (updating a webpage and
consulting a database, respectively).

— Potential ability to run social or multiplayer interventions, since it is very likely that
students will be participating as part of a group.

Clear weaknesses of campaigns as experimental platforms are as follows:

— When cast as competitions, unfairness and negative press can become problematic. It
would have been nearly impossible to run any kind of substantial randomization in
Norway, for example, as running a competition requires that every class be using the
same game and level progression to fairly compare classes against each other. This
is much less of an issue if the only stated goals are collaborative: this was the case in
Minnesota, and as we will discuss in Section 5.4 we were able to run a randomized
experiment with fastforward mastery test levels.

— Violation of independence of samples, since students may play together. Precisely
measuring how often this occurs is difficult, but two statistics are indicative: in the
Washington Challenge, 80% of levels were played during standard school hours (8:00-
15:00), and 98.5% of levels were played within one minute of another student from
the same class playing a level. This problem is particularly troublesome if different
players in the same class are put into different experimental conditions, since stu-
dents may notice that they are not performing the same task.

Other characteristics of campaigns are as follows:

— Each Challenge cost approximately $40,000 in salary and $4,000 in server costs, not
including the development of the logging infrastructure and Dragonbox Adaptive.

— Our campaigns only run a few days: the upside is that there is less time for other
factors to interfere (such as learning outside of school), but the downside is that it
is difficult to measure retention over long timescales or adjust for any problems that
occur in the middle of the campaign.

— It may be possible to interview individual students, since the participating schools
and classes are known. We did not do so during our campaigns, as our primary fo-
cus was on running them smoothly and with maximum participation; we suspect
interviews would have been possible, but coordinating permissions and timing with
instructors might have been difficult. It will be important to investigate the ease of
collection and usefulness of qualitative data in future campaigns.

To mitigate the effect of unfairness while retaining the highly motivating competi-
tive incentives, one possible solution might be to run competitions at the school level
instead of globally. Thus school A and school B might have their own distinct prizes
to award, and could be safely assigned to different experimental conditions. For that
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matter, the same could be done at the teacher level, allowing randomization between
teachers within the same school. This would be ideal, but only if the school or teacher
have little effect on student behavior so that students in different experimental condi-
tions would be a priori similar. Likewise, we might also wonder whether other student
characteristics, such as gender and socioeconomic status, seem to affect their behav-
ior. To answer these questions, we will attempt to model the effects of school, teacher,
grade, gender, and socioeconomic status in the Algebra Challenges. The results are
useful in understanding how researchers should try to randomize students into condi-
tions, and which covariates may be important to pay attention to in the process.

5.3.1. Hierarchical Linear Model. How much of an effect on total time played do school
and teacher have in our dataset? To answer this question, we used Hierarchical Linear
Modeling (HLM), a complex form of ordinary least squares (OLS) regression, which
analyzes the variance in the dependent variable when predictors are at varying levels:
e.g., students in a classroom share variance as a function of their common teacher and
common classroom. While this data could be analyzed ignoring the nested structure
of the data, for example using fixed parameter simple linear regression, this approach
would be insufficient due to its disregard for the shared variance [Woltman et al. 2012],
aggregation bias and misestimated precision [Raudenbush 1988].

More precisely, a 3-level Hierarchical Linear Model was employed to analyze how
much of an effect schools and teachers had on the amount of time played, in sec-
onds, during each of the three Algebra Challenges. Student was Level-1 of the model,
Teacher Level-2, and School Level-3. Our dependent variable for these models is Total
Time Played, measured in seconds. Our independent variables are Grade, Free and Re-
duced Lunch (Washington and Minnesota only), and Gender (Norway only). Free and
reduced Lunch is the percentage of students in a school that participate in the Free
and Reduced Lunch program, a common socioeconomic status indicator in education
research, and was collected from school reports posted online.

Due to the fact that the data available for each Campaign varies, our models for
Washington and Minnesota are slightly different from the Norway model. For Wash-
ington and Minnesota we added Grade as a predictor in the Student Level and Free
and Reduced Lunch as a predictor of the School Level. Norway had Gender data for
a portion of their students, so we added Gender as a predictor in the Student Level
along with Grade; however, Free and Reduced Lunch data was not readily available
for Norway, and so was not included as a predictor in the School level.

Results of the HLM analyses are provided in Table IV; the findings vary by location.
In Washington, the effect of Grade on Time Played was not significant, while the effect
of Free and Reduced Lunch was statistically significant at the .01 level (t = −4.125, p <
.000). This means that for Washington, the Grade level does not impact the length
of time a student plays the game, and the higher a school’s free and reduced lunch
participation rate, the less length of time students from that school play. In Minnesota,
the effect of Grade does have a statistically significant impact at the .05 level (t =
−2.265, p < .024), where higher grade levels play less time than lower ones, while the
impact of Free and Reduced Lunch does not have a statistically significant impact. In
Norway, while Grade is not significant, Gender is at .05 level (t = −0.571, p = .568, t =
2.270, p = .023, respectively), with female students playing longer than male students.

With regards to the influences of teachers and schools, the analyses showed that
the proportion of variance within teacher is more than 33% for all locations (Wash-
ington 45.60%, Minnesota 42.33%, Norway 33.82%). As compared to variance within
teacher, the proportion of variance among teacher within schools is lower for Min-
nesota (33.24%), but marginally higher in Norway (38.51%) and Washington (48.03%).
In contrast, the proportion of variance among schools in Washington (6.38%) is much
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Fixed Effect Coefficient Standard Error DF t-ratio

WA
Intercept 5402.42 539.13 61 10.021**
Grade -134.57 112.68 2281 -1.194
Free/reduced lunch -3629.95 880.06 61 -4.125**

MN
Intercept 4006.83 791.89 53 5.060**
Grade -70.40 31.08 3801 -2.265*
Free/reduced lunch -1395.19 1742.95 53 -0.800

Norway
Intercept 9163.89 541.60 287 16.920**
Grade -105.84 185.50 13464 -0.571
Gender 444.11 195.63 13464 2.270*

Table IV: *p < 0.05, **p < 0.01. 3-level HLM results, with Student nested in Teacher
nested in School, intercepts and standard errors given in seconds. Highly significant
intercepts suggest that the school and teacher impact how long students participated,
which may be useful for future experimental designs using campaign data.

lower, while the proportion of variance among schools in Minnesota (24.44%) and Nor-
way (27.68%) are still high. Thus teacher and school account for a great deal of variance
and appear to impact students’ Time Played, and potentially the school matters less
for explaining student engagement in Washington.

5.3.2. Discussion. Regardless of location, we found that teacher and school were highly
significant factors on how long students play. This means, for researchers who wish to
run randomized experiments using campaigns, randomizing within schools or even
within teachers is ideal. If the researcher wishes to use competitive incentives and
the conditions are very different, then this may not be possible. Further research is
required to understand how characteristics of schools and teachers predict student
behavior, so that conditions can be balanced as evenly as possible. Furthermore, the
characteristics that are important may vary by location: Free and reduced lunch rates,
for example, are significant predictors in Washington but not Minnesota.

At the student level, we discovered that gender was a significant predictor in Nor-
way, with females playing longer than males. In Washington and Minnesota, grade
was either not significant or had a small effect; this is not to say that grade level is
not important, but rather that once the school and teacher are known the grade level
has little effect. Grade was both significant and had a larger impact in Norway, with
higher grades playing less time once the school and teacher were known. Why exactly
this is and why the results are different between the three locations deserves further
research; we note in passing that primary school in Norway typically spans 7 years,
while primary school in the U.S. typically spans 5 years, so that there may be more
opportunity for grade to make a difference within Norwegian schools.

Besides providing guidance to future researchers wanting to use campaigns as a
source of experimental data, our results also suggest potential improvements to the
design of campaigns themselves. We motivated this analysis by asking whether or not
researchers could avoid the need to randomize within schools or teachers, in order to
take advantage of competitive incentives without causing unfairness. Ideally, though,
we could design other non-competitive incentives with equal or greater effects than
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prizes for top classes, in which case this may no longer be a concern. Furthermore,
the significant result of gender in Norway and free and reduced lunch percentages
in Washington schools suggest that campaigns may not be “fair.” In particular, one
of the essential motivations for scalable learning technologies is the ability to reach
otherwise disadvantaged students: unfortunately, our results suggest that students at
Washington schools of low socioeconomic status participate for less time. Future cam-
paigns may thus wish to provide additional outreach or support to these disadvantaged
students to ensure they have the chance of equal participation.

5.4. Fastforwarding
The population of students who participated in our Algebra Challenges were very di-
verse in both their ages and their incoming understanding of algebra: looking at the
wide grade spread in Figure 3 should be evidence of this. Another piece of evidence
is that we saw a wide range of times to achieve mastery in the Washington and Nor-
way Challenges: for example, the 10th, 50th and 90th percentiles of time to achieve
mastery in Norway were 1322 seconds, 2545 seconds, and 5070 seconds respectively.

Given that educational campaigns draw many types of students, and that students
engage the material for a fair amount of time, some form of adaptivity is likely to be
important to prevent large groups of students from being bored or frustrated. One pos-
sible method is to give a test early on, and fastforward the student to a more difficult
part of the progression if the test is passed. We were able to study the effects of such a
“fastforward” strategy of adaptivity in Minnesota by giving random mastery tests, and
will analyze the results in this section.

We provided two types of adaptivity in DragonBox Adaptive, as was described in
Section 4.1. These two types of adaptivity were both designed to provide additional
practice for players who were struggling. However, players who were already adept
at solving algebraic equations could become bored while working their way through
the 52 minimum levels required to reach the mastery tests: that is, the progression
might have been too slow for players who already understood algebra. An important
component of games and other optional educational technologies is that they must
be engaging, or else students may simply stop and do something else. This led us to
study a third type of adaptivity in the Minnesota Challenge: with 0.65% probability,
the mastery tests would be given after any level before the normal mastery test loca-
tion. If passed, the player would be fastforwarded to the progression after the test; if
failed, the player would be returned to the original point and continued to play as nor-
mal (possibly receiving more fastforward tests later). This had the potential to greatly
reduce the number of levels required to achieve mastery.

Unlike most of the other data analysis in this paper, which is confounded by simul-
taneous changes in incentives, population, and level structure, these fastforward tests
can be considered a randomized experiment. By analyzing the data from the Minnesota
Challenge, we hope to answer the following questions:

(1) How much was the game teaching? For example, if pass rates for fastforward Chal-
lenges were the same if received in the first few levels compared to the standard
point in the progression, this would be evidence the game was not improving stu-
dent ability. Much like a pretest, the overall pass rate early on could also give us
an indication of how much the underlying player population knew.

(2) What effect do early mastery tests have on player mastery rates and engagement
(measured in total time played), among players who pass them? If the boredom
hypothesis is correct and a significant problem, then early mastery tests should in-
crease both player engagement and mastery rate by preventing boredom in players
who pass the tests.
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(3) What effect do early mastery tests have on player engagement among players who
fail them? According to the theory of flow [Csikszentmihalyi 1990], boredom and
frustration are at odds: receiving and failing a difficult test could discourage play-
ers, possibly overpowering any positive effects of fastforwarding. In the best case
– players are unaffected by failing a test – we would even have supporting evi-
dence for using these types of difficult mastery tests as pretests in a campaign-
game environment. This could potentially overcome one of the primary difficulties
with game-based research: the difficulty in measuring learning gains due to lack
of pretest-posttest data.

We hypothesized that effects on mastery rate and student engagement might change
depending on when the fastforward tests showed up, with the strongest effects early
on. In the standard Minnesota progression, when no random early tests were given,
players had to play a minimum of 52 levels to reach the three mastery tests. Though
we note that due to adaptivity that would insert extra levels, students often played
considerably more than the minimum number of levels: on average students receiving
the mastery tests at the normal point had to play 99 levels to do so.

We then asked what effect triggering the mastery test on the n’th level would have.
Given the low probability of receiving the test at any particular time, we binned the
early levels into groups of 9. For any given bin, such as 10-18, we collected all the
players who played at least 18 levels, then divided them into two groups: those who
received no tests after the first 18 levels, and those who received no tests after the
first 9 levels and at least one test after levels 10-18 (further subdivided into those who
passed the tests and those who didn’t). These groups correspond to the control, the
highly adept who might have been bored, and those who might have been harmed by
being given the test too early. The last bin, 45-51, is shortened to avoid considering
players who played perfectly and received a normal test after level 52.

The results can be seen in Figure 5. By checking how likely players were to pass tests
when given in different bins, we see from Figure 5(a) that players were extremely un-
likely to pass the tests when given very early on, especially when compared to pass
rates on tests reached normally through the progression. We found this quite surpris-
ing. Note that while it was possible for students to receive a test by level 52, very few
students actually did so because the adaptive level progression would give them extra
practice when they had trouble solving levels. Thus, nearly every student who received
an early test, even in the 45-51 bin, had not yet reached levels with key concepts used
in the mastery test. This fact, combined with the low overall pass rates, implies both
that players did not already know everything the game could teach, and also that we
would expect any potential gains from fastforwarding players to be minimal because
so few players pass.

This turns out to be the case. By checking eventual mastery rates of players given
tests in the various bins, we see from Figure 5(b) that the eventual mastery rates of
those given or not given the test in any particular bin are very similar. Note that the
mastery rates continue to increase from bin to bin because we only study players who
make it to the end of each bin, so that at later bins players who quit before achieving
mastery are removed. χ2 tests confirm that giving early tests has no effect on eventual
mastery rates, as seen in the upper part of Table V. We conclude that our fastforward
tests did not achieve the intended purpose of increasing mastery rates by allowing
players to skip boring content.

We also asked whether there would be negative effects if students were given very
difficult levels early on. This can be analyzed by comparing total time played between
students who were not given tests and students who were, as seen Figure 5(c). We
caution that only a handful of students were able to pass the fastforward tests. These
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Fig. 5: Results of randomly giving out mastery tests at the beginning of the game,
where “no test” means that students did not receive an early test level by the end of
that level block (thought they might receive one later). Pass rates are very low com-
pared to pass rates when reaching the tests through the normal progression; early
tests appear to have little effect on eventual mastery rates; and failing tests has little
effect on player engagement.
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Early test bin χ2 statistic p-value (α = 0.004)
1-9 χ2(1, N = 6804) = .159 .365
10-18 χ2(1, N = 6168) = .706 .218
19-27 χ2(1, N = 5582) = .330 .305
28-35 χ2(1, N = 4952) = 2.194 .078
36-45 χ2(1, N = 4371) = .375 .375
46-51 χ2(1, N = 4059) = 5.105 .018

Early test bin Wilcoxon Z statistic p-value (α = 0.004)
1-9 Z = −.125 .901
10-18 Z = −2.373 .018
19-27 Z = −.593 .553
28-35 Z = −.215 .830
36-45 Z = −1.213 .225
46-51 Z = −.189 .850

Table V: Post-hoc analyses run to understand the effect of giving early mastery tests;
with 12 comparisons, the Bonferroni correction gives us critical α = 0.004. The top
table compares eventual mastery rates of players given early tests against those not
given tests at those times. The bottom table compares time played by students who are
given early tests and fail them against those not given tests; the Wilcoxon rank sum
test was used due to non-normality of the data. No results are significant.

students tended to play fewer levels, but there is insufficient data to draw firm con-
clusions; we can only speculate that they may have simply had less content because
they skipped many levels, or perhaps the tests merely identified students who would
not have played long anyways because they knew the content the game was meant to
teach.

Interestingly enough, we discovered no statistically significant effect on engagement
when students failed the early tests, as seen in the bottom half of Table V. If true,
this result suggests that giving pretest levels very early may be a viable way to esti-
mate student learning without causing negative consequences for player engagement;
it could also mean that games or adaptivity schemes will not cause too much harm to
the student population when students are occasionally given extremely difficult prob-
lems if they can submit an incorrect answer without penalty.

Regardless of the specific lessons learned from our fastforward mastery test, a more
general lesson learned from the Minnesota Algebra Challenge is that campaigns can be
successfully used to run randomized controlled experiments. Without any competitive
incentives, we were able to add extra assessment levels that could have drastic impacts
on players’ progress through the game, and received no complaints about this behavior.
We caution, however, that players were all basically performing the same task and
would have been very unlikely to notice or discuss differences in the levels they saw.
Experiments with drastically different conditions would be more difficult to run.

6. CONCLUSION
In this paper, we discuss a new method for delivering educational technology: the cam-
paign. Campaigns are focused, relatively short events designed to promote and encour-
age the use of educational technology across a wide variety of students, and are quite
different from other popular methods of delivering such technology or content, such
as downloadable software, free online websites, or MOOCs. In light of the high rate
of mastery (96%) among students in our campaigns who played the 1.5 hours we re-
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quested, they seem deserving of research as educational tools. Furthermore, while we
have framed campaigns as being useful for delivering educational technology, it may
be possible to use them with other types of content or software. This would require
careful incentive design for users to participate, which we leave to future work.

To better understand the properties of campaigns, we present a case study using
three campaigns we conducted with the educational game DragonBox Adaptive: the
Washington, Norway, and Minnesota Algebra Challenges. We detail the costs and lo-
gistics of running campaigns, and describe basic information about student participa-
tion and achievement in the form of time played and ability to achieve mastery of the
content. To help others planning on running campaigns, we share several of our obser-
vations. First, players play our game orders of magnitude longer than they have played
other educational games offered on free websites. Second, collaborative incentives and
rewards to classes for achieving mastery of the content may not have much effect on
how long students play, but competitive incentives and rewards to students for finish-
ing levels may have large effects while also leading to undesirable “gaming” behavior.
Third, running experiments using campaign data can be challenging due to the diffi-
culty of randomizing within schools or teachers, and campaigns may have differential
effects depending on student gender and socioeconomic status. Finally, giving students
“pre-test” levels they are overwhelmingly likely to fail does not necessarily cause frus-
tration or other negative effects. Each of these findings requires further study, and
suggests other interesting lines of research, but taken together are a promising first
step in understanding how campaigns can be used to achieve learning at scale.
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